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Abstrafl. The exact path integration for systems with magnetic charges is presented. The 
Green function and bound-state energy spectrum of a dyonium are obtained. Unlike earlier 
works, the exact path integration is done directly in spherical polar Coordinates and does 
not require the use of coordinate transformations such as the non-bijective transformation 
o f  Kustaanheimo and Stiefel. 

1. Introduction 

In this paper, we demonstrate the direct evaluation of the path integral in spherical 
polar coordinates for non-relativistic systems with magnetic charges [ 1-31, The method 
we give sets a natural framework for achieving the separation of the propagator and 
the Green function into a radial part and the Wu-Yang monopole harmonics [4]. This 
is in contrast to earlier path integral approaches for Coulomb problems involving 
magnetic charges such as that of Diirr and Inomata [ 5 ]  which makes use of parabolic 
rotational coordinates, and that of Kleinert [6] which applies the R4 to R' non-bijective 
Kustaanheimo-Stiefel (KS) mapping [7]. Note that the KS coordinates in four- 
dimensional space are directly related to parabolic rotational coordinates when para- 
metrized in terms of Euler angles. Hence, the monopole harmonics of Wu and Yang 
are recovered using the KS approach when the transformation to angular variables is 
carried out. As we shall see, however, there is no need to go through these coordinate 
transformations because we can readily obtain the separated Green function or the 
propagator by directly evaluating the path integral in spherical polar coordinates. The 
evaluation of the radial part is then subject to the specification of the scalar interaction 
potential V (  r). 

To solve problems involving magnetic charges directly in spherical polar coordin- 
ates, we shall see that the procedure for path integrating a class of non-central potentials 
involving both the polar and azimuthal angles recently presented [S IT  proves essential. 
Here, the repeated application of Bateman's expansion formula [9] within the path 
integral allows the complete separation of the propagator or the Green function into 
angular and radial parts. 

i n  this paper, we shaii focus our soiution on dyon systems [io-iij. in  particular, 
the bound-state energy spectrum is obtained for the dyonium. Naturally included in 

t See Khandekar and Lawande in [8] for a class of potentials o f  the form V ( r ,  0)  and Peak and lnomata 
in [8] for central potentials. Path integration in polar coordinates was treated first by Edwards and Gulyaev. 
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the solution presented are the special cases of an electrically charged particle moving 
around a magnetic monopole or around a dyon. 

C C Bernido and M V Carpio-Bernido 

2. The propagator for systems with magnetic charges 

We shall consider a light dyon of charge (e , ,  8,) interacting with a heavy dyon of 
charge (e,,&) located at the origin and with a central scalar potential V ( r ) .  The e 
and g refer to the electric and magnetic charges, respectively. The Lagrangian for this 
dyon-dyon system is given by 

L = f p i 2 + q A ( r ) .  r- V ( r )  (2.1) 

where p is the reduced mass and q = e,g, - e,g,. Special cases include the charge-dyon 
interaction ( g ,  = 0), the charge-monopole system (8, = e2 = 0) and, of course, the 
C.oulomb problem (8, =g2=0). 

Following Wu and Yang [ 4 ] ,  the vector potential A ( r )  is chosen to be 

( 4 ) s  = (& )a  = 0 (2.2a) 

(Ar ) ,=  ( A e ) b = O  (A,)b=-q(l+cosO)(rsinO)-' (2.26) 

valid for the overlapping regions R, = { O s  0 < fr+ 8 )  and R, = {fr - S < 0 s T } ,  

respectively, with 0 < S sir .  We simply note the fibre bundle structure of the resulting 
wavefunctions and concentrate on the solutions analytic in a specified region, i.e. JI, 
and JIb corresponding to R ,  and R,,  respectively. 

The propagator for the particle of mass p described by the Lagrangian (2.1) can 
be written in terms of the path integral [13], 

(A,),= q(l  -cos 0 ) ( r  sin O)-'  

K ( r " ,  r', T)= exp - S  9 ( r )  (3 
where S 
given by 

L dt  is the action and T = f"- f'. In time-sliced form, the propagator is 

where the action for each time subinterval, rj = $ - ( i - I ,  has the form 

(2.5) 
cc I-L 

2 Tj 'j 

Sj =- (ry + rf , - I  ) -- rjq-, cos 0, + qA(5 )  . $q - V ( I ; ) T ~  

where 

cosQj=cos Ojcos Oj-,+sinOjsinej_,cos(r$j-r$,,_,). (2.6) 

The velocity-dependent term in (2.5) must be evaluated with care. End-point 
eva!ua!ions of !he vector po!en!ia!, Le, .A(q+:) and A ( r j ) j  give rise to non-negligible 
differences in the contributions to the action integral. Following Feynman [14] ,  we 
take the arithmetic average, i [ A ( r j + , ) + A ( q ) ]  . (q+, - r j ) ,  For the case of the monopole 
potential (2.2), the contribution of the velocity-dependent potential is just 
q(rtl-cos~.)Ar$,+O(r~/')  in which & = ( 0 , + O j _ , ) / 2  and Aq5j=r$j-r$,- , .  With this, 
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(2 .5 )  can be written as 

(2.7) 

since terms of O( T;+‘), for E > 0, can be ignored in path integration. With (2.4) and 
(2.7), a path integral evaluation is carried out in the following sections. 

P P S, = - ( r i +  r j - l )  -- r;r;-, cos 0, + q(*l -cos ()A+; - V(ri)? 
27, 71 

3. Evaluating the angular path integrals 

There are two stages involved in performing the angular path integrations in (2.4) with 
the action (2.7). The first stage is the separation of the $-dependent terms. The second 
entails carrying out the separation of the #-part from the radial part. Once a complete 
separation is achieved, orthogonality relations of the partial angular wavefunctions 
allow the multiple angular integrals to be evaluated in closed form. These yield nothing 
but the monopole harmonics. 

The +coordinate can be separated from the other variables by utilizing the 
asymptotic expansion for the modified Bessel functions I A z ) ,  for any assigned value 
of Y and large (complex) z, valid for /arg(u/~;)l< ~ / 2 ,  

Here we have dropped the negligible second series in the expansion [15] of I . ( z ) .  
With (3.1), the following relation is obtained [16]t: 

m 

e x p [ t c o s (  A++$) -e] = m=-m 1 exp(imA+)I,,,(u/~,). (3.2) 

The +dependent terms in the propagator can be written in the same form as the 
left-hand side of (3.2) by noting that for small 71 we have the relation cos(A$,)- 
aT;A+; = cos(A+, +a?)+ a2r?/2. Application of (3.2), then makes the path integration 
for the +-coordinate in (2.7) straightforward, yielding 

i P  ( r2+  rf ) -- r.r. cos e, COS #;-, - i  V ( r ; ) q / h  2h7, ’ I - ‘  hT, ’’-I 

N-l  

; = I  
x n (rjdqsinO,d#,) (3.3) 

t Note that this work by Bernido and Inomata, which treats a particle in an Aharonov-Bahm potential field. 
provided an early example with non-trivial dependence an an angular variable that can be handled exactly. 
A treatment of an extended class is given by Chcng and De Sauza Dutra in [16], which also entails evaluation 
of the constrained path integral found in Edwards [16]. 
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To separate the radial coordinate from the &variable, we proceed by making use 
of (3.1), allowing us to write (3.3) as 

K ( r " ,  r'; T)= Iim ( 2 ~ ) ~ - '  1 exp[i(m+q/fi)($"-+')I 
m 

N-m m=-m 

N n (27rpr,rj-> sin e, sin ej-l/ifyj)-'/2 

xexp  - (r:+ rf-,)-iV(q)q/fi +- r.r. 

-if[(m + q/fi)2 -i]fi~,/4pr,r,-~ sin(ej/2) sin(e,-,/z) 

-if[(m- q/f i )2-~]f i~j /4prjr ,_ ,   COS(^,/^)  COS(^,-,/^) 

X I , . ,  

P cos(A0,) ( 2fiTj iP IfiT, "-I 

j N  ,=I ,=I 

N-I 

+iq'~~/2fipr,r,+, JJ (p/27rif1q)~/* n ( r j  dr, sin 0, de,). (3.4) 

With the help of the relation cos (Ae , )=4~os (A0 , /2 )+(A8 , /2 )~ /2 -3+0(~~) ,  together 
with the designation of and c2 as 

(3.5) 

(3 .6)  

4 P  
' - i f i  

4 P  
2-ifi  

.$ --qr,-l sin(ej/2)sin(Oj_,/2) 

6 -- qc-,  COS(^,/^)  COS(^,_,/^) 

equation (3.4) acquires the form 

K ( r " ,  r'; T)= Iim (2r IN- '  1 exp[i(m*q/fi)($"-+')] 
m 

N-m ",=-e 

N 

x I ,JJ, ( i f iq /85~pr ,q-~) -"~  exp (& (r:+ rj-,) 

- iv (q)q / f i  + [ ( 4 q / f i ) 2 + 3 ] i f i q / 3 2 ~ r j r j _ ,  

-(3prjrj-,/ifiTj)j I u ( t 1 / T j ) I p ( t 2 / T j )  

N N - l  

,=, ,=, x JJ (p/27rif15)'/~ n (r:dr, sin 0, de,). (3.7) 

Here, LI = m + q /  fi and p = m - 9 /  fi. Up to this point, the 0 and r variables are still 
mixed. Now, we make use of Bateman's expansion formula [9], 

fir,[{ sin(ej/2) sin(6,_,/2)]Ip[t  COS(^,/^)  COS(^,-,/^)] 

= [sin(0,/2) sin(0,-,/2)]"[cos( ej/2) COS( e ,_,p)ip 
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which effectively separates the r and 0 coordinates with C=4prjri_l/ if i~j  and PTP the 
Jacobi polynomials. The orthogonality condition for the Jacobi polynomials facilitates 
the integration of the 0-variable allowing us to write equation (3.7) as 

I 

K ( r “ , r ’ ;  T ) =  1 Rl( r” , r ’ ;  ~)exp[i(m*q/h)(+”-+’)]  
1=s/n “,=-I 

x   COS(^"/^) co~(s’/2)]~[sin(0’’/2)  sin(^'/^)]“ 

Equation (3.9) can be written as K ( r ” ,  r’; 7)=XRl(r”,  r’; T ) % ( e ” ,  +”)%(e’, $’), where 
the angular functions are the monopole harmonics of Wu and Yang [4], 

9q,, , l ,m(e, +) 

x P F P ( x )  exp[i(m + q / h ) + ]  (3.10) 

with x = cos 0, a = m + q /  fi and p = m - q/  fi. Our normalization factor differs with 
that of Wu and Yang by a factor 2’“. 

The radial part which remains to be path integrated once V ( r )  is specified is of 
the form 

R,(r”,  r‘; T ) =  Iim ( 4 ~ ) ~  (2rrifiq/prjq-,)’l2 
N - m  

(3.11) 

4. Bound-siaie specirum ior ihe lyouium 

In tackling the dyonium for which V ( r )  = -K/r, where K = - ( e , e , + g , g , ) ,  we note that, 
for systems with Coulombic radial dependence, the propagator has not yet been 
evaluated exactly. Instead, the Green function is evaluated since its poles and residues 
at the poles provide the discrete energy spectrum and the eigenfunctions, respectively 
[17-191. The Green function can be obtained from the Fourier transform of the 
propagator K(r ’ ,  r”: T ) ,  

In a manner similar to that for the path integral representation of the propagator, the 
promotor P(r” ,  r ‘ ;  r )  in (4.1) can be expressed as a path integral in terms of a modified 
action W = I  ( L +  E )  df.  For the case of the dyonium potential, the procedure in section 
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3 can be applied to separate the monopole harmonics from the radial part leading to 
a promotor of the form, f(r”, r’; T )  =I p/(r”, r’; T ) ? J ( O ” ,  4”)Yy(B’, 4’). The radial part 
is given by 

C C Bernido and M V Carpio-Bernido 

N N N-l 

P l ( r “ , r ’ ; ~ ) =  lim (rorN)-’ n exp(iW,/h) n (p/Zrih71)”’ n (dr,) (4.2) 
N - m  ! , = I  ,=, ,-I 

where the effective short-time action is 

(4.3) 

The path integration with this short-time action can be done following the procedure 
given by lnomata in his evaluation of the radial path integral for the Coulomb problem 
[19]. This yields the radial Green function, 

G,(r”,r’; E ) = ( i h ) - ‘  

x W - , , , ,  -2ikr“) (4.4) 

where M(-2ikr‘) and W(-2ikr”) are Whittaker functions. Here k = (2pE)’12/h, p = 
i ( p ~ ~ / 2 f i ’ E ) ’ ’ ~  and y = [( r+f)’-  (q/h)’]’/’-f. 

The discrete energy spectrum for the dyon-dyon interaction can be obtained from 
the poles of the gamma function r ( z ) ,  i.e. when p + y + l  = -n , (n ,=O,  1,2, .  . . ) .  This 
yields 

E, = - ( m ~ ~ / 2 h ’ n ~ )  n = n, + y +  1. (4.5) 

Equations (4.4) and (4.5) coincide with the previous results for the dyonium [ 5 , 6 ,  111. 
By taking e2 = g,  = 0, we can recover the results for the charge-monopole interaction 
[2-41. Naturally, when the magnetic charges are g ,  =g,=O, the results reduce to the 
Coulomb wavefunctions and spectrum [17-191. 

5. Conclusion 

The direct evaluation of the path integral in spherical polar coordinates for the 
dyon-dyon system, with its special cases such as the charge-monopole and Coulomb 
systems, as presented above, provides an alternative to the treatment using parabolic 
coordinates [5] or the Kustaanheimo-Stiefel transformation [6 ] .  The steps used in the 
preceding sections are straightforward and may be applied to provide another way of 
treating magnetic charges in higher-dimensional theories, such as the Kaluza-Klein 
monopole [20]. 
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